CORREL
Updated 2023-10-31 15:54:30.627000
Syntax
SELECT [westclintech].[wct].[CORREL] (
,<@Known_y, float,>
,<@Known_x, float,>)
Description
Use the aggregate function CORREL to calculate the correlation coefficient between two datasets. The equation for the correlation coefficient is
r_{xy} = \frac{\sum(x-\bar{x})(y-\bar{y})}{\sqrt{\sum(x-\bar{x})^2\sum(y-\bar{y})^2}
Arguments
@Known_x
the x-values to be used in the CORREL calculation. @Known_x is an expression of type float or of a type that can be implicitly converted to float.
@Known_y
the y-values to be used in the CORREL calculation. @Known_y is an expression of type float or of a type that can be implicitly converted to float.
Return Type
float
Remarks
CORREL is an AGGREGATE function and follows the same conventions as all other AGGREGATE functions in SQL Server.
Examples
In this example, we calculate the slope for a single set of x- and y-values
SELECT wct.CORREL(y, x) as CORREL
FROM
(
SELECT 0.75,
1
UNION ALL
SELECT 2.5,
2
UNION ALL
SELECT 6.75,
3
UNION ALL
SELECT 10,
4
) n(x, y);
This produces the following result
{"columns":[{"field":"CORREL","headerClass":"ag-right-aligned-header","cellClass":"ag-right-aligned-cell"}],"rows":[{"CORREL":"0.988719187867937"}]}
In this example, we will populate a temporary table with some historical financial information and then calculate the correlation. First, create the table and put some data in it:
CREATE TABLE #c
(
SYM NVARCHAR(5),
YE BIGINT,
REV FLOAT,
GPROF FLOAT,
OPINC FLOAT,
NETINC FLOAT
);
INSERT INTO #c
VALUES
('YHOO', 2009, 6460.32, 3588.57, 386.69, 597.99);
INSERT INTO #c
VALUES
('YHOO', 2008, 72.5, 4185.14, 12.96, 418.92);
INSERT INTO #c
VALUES
('YHOO', 2007, 6969.27, 4130.52, 695.41, 639.16);
INSERT INTO #c
VALUES
('YHOO', 2006, 6425.68, 3749.96, 940.97, 751.39);
INSERT INTO #c
VALUES
('YHOO', 2005, 5257.67, 3161.47, 1107.73, 1896.23);
INSERT INTO #c
VALUES
('GOOG', 2009, 23650.56, 14806.45, 8312.19, 6520.45);
INSERT INTO #c
VALUES
('GOOG', 2008, 21795.55, 13174.04, 5537.21, 4226.86);
INSERT INTO #c
VALUES
('GOOG', 2007, 16593.99, 9944.9, 54.44, 4203.72);
INSERT INTO #c
VALUES
('GOOG', 2006, 10604.92, 6379.89, 3550, 3077.45);
INSERT INTO #c
VALUES
('GOOG', 2005, 6138.56, 3561.47, 2017.28, 1465.4);
INSERT INTO #c
VALUES
('MSFT', 2010, 62484, 509, 24167, 18760);
INSERT INTO #c
VALUES
('MSFT', 2009, 58437, 46282, 21225, 14569);
INSERT INTO #c
VALUES
('MSFT', 2008, 60420, 48822, 22271, 17681);
INSERT INTO #c
VALUES
('MSFT', 2007, 51122, 40429, 18438, 14065);
INSERT INTO #c
VALUES
('MSFT', 2006, 44282, 36632, 16064, 12599);
INSERT INTO #c
VALUES
('ORCL', 2010, 26820, 21056, 9062, 6135);
INSERT INTO #c
VALUES
('ORCL', 2009, 23252, 18458, 8321, 5593);
INSERT INTO #c
VALUES
('ORCL', 2008, 22430, 17449, 7844, 5521);
INSERT INTO #c
VALUES
('ORCL', 2007, 17996, 13805, 5974, 4274);
INSERT INTO #c
VALUES
('ORCL', 2006, 14380, 11145, 4736, 3381);
INSERT INTO #c
VALUES
('SAP', 2009, 10672, 6980, 2588, 1748);
INSERT INTO #c
VALUES
('SAP', 2008, 11575, 7370, 2701, 1847);
INSERT INTO #c
VALUES
('SAP', 2007, 10256, 6631, 2698, 1906);
INSERT INTO #c
VALUES
('SAP', 2006, 9393, 6064, 2578, 1871);
INSERT INTO #c
VALUES
('SAP', 2005, 8509, 5460, 2337, 1496);
Now, calculate the correlation of the revenue (REV) against the year (YE) for each company (SYM)
SELECT #c.SYM,
wct.CORREL(REV, YE) as CORREL
FROM #c
GROUP BY SYM;
This produces the following result.
{"columns":[{"field":"SYM"},{"field":"CORREL","headerClass":"ag-right-aligned-header","cellClass":"ag-right-aligned-cell"}],"rows":[{"SYM":"GOOG","CORREL":".988604792733014"},{"SYM":"MSFT","CORREL":".91861026921264"},{"SYM":"ORCL","CORREL":".983795721235544"},{"SYM":"SAP","CORREL":".873067973316442"},{"SYM":"YHOO","CORREL":".-0.219384585146269"}]}
In this example, we will calculate the correlation of the operating income (OPINC) against the revenue (REV)
SELECT #c.SYM,
wct.CORREL(OPINC, REV) as CORREL
FROM #c
GROUP BY SYM;
This produces the following result.
{"columns":[{"field":"SYM"},{"field":"CORREL","headerClass":"ag-right-aligned-header","cellClass":"ag-right-aligned-cell"}],"rows":[{"SYM":"GOOG","CORREL":"0.651906713868849"},{"SYM":"MSFT","CORREL":".987612258172035"},{"SYM":"ORCL","CORREL":".9924157389967"},{"SYM":"SAP","CORREL":".844595495520328"},{"SYM":"YHOO","CORREL":"0.677389856742323"}]}
Let’s say we wanted to perform the original analysis, but we only want to return the results where the correlation is positive.
SELECT #c.SYM,
wct.CORREL(OPINC, REV) as CORREL
FROM #c
GROUP BY SYM
HAVING wct.CORREL(OPINC, REV) > 0;
This produces the following result.
{"columns":[{"field":"SYM"},{"field":"CORREL","headerClass":"ag-right-aligned-header","cellClass":"ag-right-aligned-cell"}],"rows":[{"SYM":"GOOG","CORREL":".988604792733014"},{"SYM":"MSFT","CORREL":".91861026921264"},{"SYM":"ORCL","CORREL":".983795721235544"},{"SYM":"SAP","CORREL":".873067973316442"}]}
See Also
CORREL - Aggregate function to calculate the correlation coefficient
COVAR - the average of the products of the deviations in known x- and y-values
FISHER - the Fisher transformation at x
FISHERINV - the inverse Fisher transformation
PEARSON - Aggregate function to calculate the correlation coefficient
SLOPE - slope of the linear regression through the data points in the known x-values and y-values
LINEST - the Ordinary Least Squares (OLS) solution for a series of x-values and y-values
STEYX - the standard error of the predicted y-value for each x in the regression