PEARSON
Updated 2023-11-01 21:03:56.553000
Syntax
SELECT [westclintech].[wct].[PEARSON] (
,<@Known_y, float,>
,<@Known_x, float,>)
Description
Use the aggregate PEARSON function to calculate the correlation coefficient between two datasets. The equation for the correlation coefficient is
r_{xy}=\frac{\sum(x-\bar{x})(y-\bar{y})}{\sqrt{\sum(x-\bar{x})^2\sum(y-\bar{y})^2}}
Arguments
@Known_x
the x-values to be used in the PEARSON calculation. @Known_x is an expression of type float or of a type that can be implicitly converted to float.
@Known_y
the y-values to be used in the PEARSON calculation. @Known_y is an expression of type float or of a type that can be implicitly converted to float.
Return Type
float
Remarks
PEARSON is an AGGREGATE function and follows the same conventions as all other AGGREGATE functions in SQL Server.
Examples
In this example, we calculate the Pearson coefficient as correlation for a single set of x- and y-values
SELECT wct.PEARSON(y, x) as PEARSON
FROM ( SELECT 0.75,
1
UNION ALL
SELECT 2.5,
2
UNION ALL
SELECT 6.75,
3
UNION ALL
SELECT 10,
4) n(x, y);
This produces the following result
{"columns":[{"field":"PEARSON","headerClass":"ag-right-aligned-header","cellClass":"ag-right-aligned-cell"}],"rows":[{"PEARSON":"0.988719187867937"}]}
In this example, we will populate some temporary table with some historical financial information and then calculate the Pearson coefficient of correlation. First, create the table and put some data in it:
CREATE TABLE #c (
SYM NVARCHAR(5),
YE BIGINT,
REV FLOAT,
GPROF FLOAT,
OPINC FLOAT,
NETINC FLOAT);
INSERT INTO #c
VALUES ('YHOO', 2009, 6460.32, 3588.57, 386.69, 597.99);
INSERT INTO #c
VALUES ('YHOO', 2008, 72.5, 4185.14, 12.96, 418.92);
INSERT INTO #c
VALUES ('YHOO', 2007, 6969.27, 4130.52, 695.41, 639.16);
INSERT INTO #c
VALUES ('YHOO', 2006, 6425.68, 3749.96, 940.97, 751.39);
INSERT INTO #c
VALUES ('YHOO', 2005, 5257.67, 3161.47, 1107.73, 1896.23);
INSERT INTO #c
VALUES ('GOOG', 2009, 23650.56, 14806.45, 8312.19, 6520.45);
INSERT INTO #c
VALUES ('GOOG', 2008, 21795.55, 13174.04, 5537.21, 4226.86);
INSERT INTO #c
VALUES ('GOOG', 2007, 16593.99, 9944.9, 54.44, 4203.72);
INSERT INTO #c
VALUES ('GOOG', 2006, 10604.92, 6379.89, 3550, 3077.45);
INSERT INTO #c
VALUES ('GOOG', 2005, 6138.56, 3561.47, 2017.28, 1465.4);
INSERT INTO #c
VALUES ('MSFT', 2010, 62484, 509, 24167, 18760);
INSERT INTO #c
VALUES ('MSFT', 2009, 58437, 46282, 21225, 14569);
INSERT INTO #c
VALUES ('MSFT', 2008, 60420, 48822, 22271, 17681);
INSERT INTO #c
VALUES ('MSFT', 2007, 51122, 40429, 18438, 14065);
INSERT INTO #c
VALUES ('MSFT', 2006, 44282, 36632, 16064, 12599);
INSERT INTO #c
VALUES ('ORCL', 2010, 26820, 21056, 9062, 6135);
INSERT INTO #c
VALUES ('ORCL', 2009, 23252, 18458, 8321, 5593);
INSERT INTO #c
VALUES ('ORCL', 2008, 22430, 17449, 7844, 5521);
INSERT INTO #c
VALUES ('ORCL', 2007, 17996, 13805, 5974, 4274);
INSERT INTO #c
VALUES ('ORCL', 2006, 14380, 11145, 4736, 3381);
INSERT INTO #c
VALUES ('SAP', 2009, 10672, 6980, 2588, 1748);
INSERT INTO #c
VALUES ('SAP', 2008, 11575, 7370, 2701, 1847);
INSERT INTO #c
VALUES ('SAP', 2007, 10256, 6631, 2698, 1906);
INSERT INTO #c
VALUES ('SAP', 2006, 9393, 6064, 2578, 1871);
INSERT INTO #c
VALUES ('SAP', 2005, 8509, 5460, 2337, 1496);
Now, calculate the correlation of the revenue (REV) against the year (YE) for each company (SYM)
SELECT #c.SYM,
wct.PEARSON(REV, YE) as PEARSON
FROM #c
GROUP BY SYM;
This produces the following result.
{"columns":[{"field":"SYM"},{"field":"PEARSON","headerClass":"ag-right-aligned-header","cellClass":"ag-right-aligned-cell"}],"rows":[{"SYM":"GOOG","PEARSON":"0.988604792733014"},{"SYM":"MSFT","PEARSON":"0.91861026921264"},{"SYM":"ORCL","PEARSON":"0.983795721235544"},{"SYM":"SAP","PEARSON":"0.873067973316442"},{"SYM":"YHOO","PEARSON":"-0.219384585146269"}]}
In this example, we will calculate the Pearson coefficient of correlation of the operating income (OPINC) against the revenue (REV)
SELECT #c.SYM,
wct.PEARSON(OPINC, REV) as PEARSON
FROM #c
GROUP BY SYM;
This produces the following result.
{"columns":[{"field":"SYM"},{"field":"PEARSON","headerClass":"ag-right-aligned-header","cellClass":"ag-right-aligned-cell"}],"rows":[{"SYM":"GOOG","PEARSON":"0.651906713868849"},{"SYM":"MSFT","PEARSON":".987612258172035"},{"SYM":"ORCL","PEARSON":".9924157389967"},{"SYM":"SAP","PEARSON":"0.844595495520328"},{"SYM":"YHOO","PEARSON":"0.677389856742323"}]}
Let’s say we wanted to perform the same analysis as in Example #1, but we only want to return the results where the Pearson coefficient of correlation is positive.
SELECT #c.SYM,
wct.PEARSON(REV, YE) as PEARSON
FROM #c
GROUP BY SYM
HAVING wct.PEARSON(REV, YE) > 0;
This produces the following result.
{"columns":[{"field":"SYM"},{"field":"PEARSON","headerClass":"ag-right-aligned-header","cellClass":"ag-right-aligned-cell"}],"rows":[{"SYM":"GOOG","PEARSON":"0.988604792733014"},{"SYM":"MSFT","PEARSON":"0.91861026921264"},{"SYM":"ORCL","PEARSON":"0.983795721235544"},{"SYM":"SAP","PEARSON":"0.873067973316442"}]}