HESSIAN
Updated 2024-03-06 16:09:45.447000
Syntax
SELECT [westclintech].[wct].[HESSIAN] (
<@Func, nvarchar(max),>
,<@VarNames, nvarchar(4000),>
,<@X, nvarchar(4000),>
,<@H, float,>)
Description
Use the scalar function HESSIAN to numerically compute the Hessian matrix. HESSIAN assumes that the function has continuous partial derivatives. HESSIAN produces a square matrix of second order partial derivatives of a scalar function.
\textbf{H}_f\left(x_1,x_2,\dots,x_n\right)=\begin{bmatrix}\frac{\partial^2f}{\partial{x}_1^2}&\frac{\partial^2f}{\partial{x}_1\partial{x}_2}&\frac{\partial^2f}{\partial{x}_1\partial{x}_3}&\dots&\frac{\partial^2f}{\partial{x}_1\partial{x}_n}\\\\\frac{\partial^2f}{\partial{x}_2\partial{x}_1}&\frac{\partial^2f}{\partial{x}_2^2}&\frac{\partial^2f}{\partial{x}_2\partial{x}_3}&\dots&\frac{\partial^2f}{\partial{x}_2\partial{x}_n}\\\\\vdots&\vdots&\vdots&\ddots&\vdots\\\\\frac{\partial^2f}{\partial{x}_n\partial{x}_1}&\frac{\partial^2f}{\partial{x}_n\partial{x}_2}&\frac{\partial^2f}{\partial{x}_n\partial{x}_3}&\dots&\frac{\partial^2f}{\partial{x}_n^2}\end{bmatrix}
Arguments
@H
Step size.
@X
The point where the Hessian is calculated.
@VarNames
The names of the variables.
@Func
The function to be evaluated, as a string. The function must be in the form of a SELECT statement.
Return Type
nvarchar(max)
Remarks
If Func returns a NULL then NULL Is returned.
If Func is not a valid SELECT statement then NULL is returned.
If no solution is found then NULL is returned.
If @X is NULL then @X = ''.
If H is NULL then H = 0.
If H <= 0 then H = 2^(-13).
Examples
Example #1
Calculate the Hessian for the function
f(x,y)=x^3-2xy-y^6
at the point (1,2) Since the result is returned as a string, we will use the MATRIX function to unpack the results into a matrix format.
SELECT *
FROM wct.MATRIX(wct.HESSIAN('SELECT POWER(@x,3) - 2*@x*@y - POWER(@y,6)',
'@x,@y', '1,2', NULL));
This produces the following result.
{"columns":[{"field":"RowNum","headerClass":"ag-right-aligned-header","cellClass":"ag-right-aligned-cell"},{"field":"ColNum","headerClass":"ag-right-aligned-header","cellClass":"ag-right-aligned-cell"},{"field":"ItemValue","headerClass":"ag-right-aligned-header","cellClass":"ag-right-aligned-cell"}],"rows":[{"RowNum":"0","ColNum":"0","ItemValue":"6"},{"RowNum":"0","ColNum":"1","ItemValue":"-2"},{"RowNum":"1","ColNum":"0","ItemValue":"-2"},{"RowNum":"1","ColNum":"1","ItemValue":"-480.000001907349"}]}
See Also
JACOBIAN - Numerically compute the Jacobian matrix
NEWTON - Find the root of a univariate function
SECANT - Find the root of single-variable continuous function.
BRENT - Find the root of a continuous function of on variable