BETA
Updated 2024-03-07 19:28:13.170000
Syntax
SELECT [westclintech].[wct].[BETA] (
<@A, float,>
,<@B, float,>)
Description
Use the scalar function BETA to calculate the beta function. This is equivalent of Beta[a, b] in Mathematica. Also called the Euler integral, the BETA function is defined by
\text{B}(a,y)=\frac{\Gamma(a)\,\Gamma(b)}{\Gamma(a+b)}
The beta function is symmetric, meaning
\text{B}(a,b)=\text{B}(b,a)
Arguments
@A
is any real number. @A is an expression of type float or of a type that can be implicitly converted to float.
@B
is any real number. @B is an expression of type float or of a type that can be implicitly converted to float.
Return Type
float
Remarks
If @A = 0, BETA returns an error.
If @B = 0, BETA returns an error.
Examples
SELECT wct.BETA(7.5, 1.5);
This produces the following result.
{"columns":[{"field":"column 1","headerClass":"ag-right-aligned-header","cellClass":"ag-right-aligned-cell"}],"rows":[{"column 1":"0.0411298598751837"}]}
See Also
BETAI - Incomplete beta function
BETAINV - Inverse of the beta distribution
BETAPDF - Probability density function of the beta distribution
GAMMA - complete gamma function
GAMMALN - natural logarithm of the complete gamma function
FACTLN - natural logarithm of a factorial