Logo

BETA

Updated 2024-03-07 19:28:13.170000

Syntax

SELECT [westclintech].[wct].[BETA] (
  <@A, float,>
 ,<@B, float,>)

Description

Use the scalar function BETA to calculate the beta function. This is equivalent of Beta[a, b] in Mathematica. Also called the Euler integral, the BETA function is defined by

\text{B}(a,y)=\frac{\Gamma(a)\,\Gamma(b)}{\Gamma(a+b)}

The beta function is symmetric, meaning

\text{B}(a,b)=\text{B}(b,a)

Arguments

@A

is any real number. @A is an expression of type float or of a type that can be implicitly converted to float.

@B

is any real number. @B is an expression of type float or of a type that can be implicitly converted to float.

Return Type

float

Remarks

If @A = 0, BETA returns an error.

If @B = 0, BETA returns an error.

Examples

SELECT wct.BETA(7.5, 1.5);

This produces the following result.

{"columns":[{"field":"column 1","headerClass":"ag-right-aligned-header","cellClass":"ag-right-aligned-cell"}],"rows":[{"column 1":"0.0411298598751837"}]}

See Also

BETAI - Incomplete beta function

BETADIST - beta distribution

BETAINV - Inverse of the beta distribution

BETAPDF - Probability density function of the beta distribution

GAMMA - complete gamma function

GAMMALN - natural logarithm of the complete gamma function

FACT - factorial of a number

FACTLN - natural logarithm of a factorial

BICO - Binomial coefficient

COMBIN - Combinatorial function

PERMUT - calculate the number of permutations for a given number objects that can be selected from a number of objects